2-(3-methoxyphenyl)-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazole, also known as **DIOX**, is a compound with potential applications in **pharmaceutical and materials science research**.
Here's a breakdown of its significance:
**Structure and Properties:**
* **Oxadiazole core:** The 1,3,4-oxadiazole ring is a heterocyclic system known for its rigidity and electron-withdrawing properties.
* **Substituents:**
* **3-methoxyphenyl:** This aromatic group provides potential for hydrogen bonding and interactions with biological targets.
* **4-(trifluoromethyl)phenyl:** The trifluoromethyl group adds lipophilicity (fat-loving nature) and can influence the compound's metabolic stability.
**Research Importance:**
1. **Pharmaceutical Research:**
* **Anti-inflammatory activity:** DIOX has shown promising results in preclinical studies for inhibiting inflammation. It has been suggested to be effective against inflammatory bowel disease and arthritis.
* **Anti-cancer activity:** Research suggests DIOX might possess anti-cancer properties, potentially targeting specific cancer cell lines.
* **Antimicrobial activity:** DIOX has demonstrated potential against certain bacteria and fungi, making it a potential candidate for new antimicrobial therapies.
2. **Materials Science:**
* **Organic Electronics:** DIOX's electron-withdrawing nature and aromatic structure make it a potential component for organic light-emitting diodes (OLEDs), organic solar cells, and other organic electronic devices.
**Current Status:**
* DIOX is still in the **preclinical stage** of research.
* More studies are required to evaluate its safety, efficacy, and long-term effects.
* Further research is ongoing to optimize its properties and explore its potential for various applications.
**Important Notes:**
* The information provided here is for informational purposes only and should not be interpreted as medical advice.
* Always consult with a qualified healthcare professional for any health concerns or before making any decisions related to your health or treatment.
* Further research is necessary to confirm the full potential and limitations of DIOX.
ID Source | ID |
---|---|
PubMed CID | 850621 |
CHEMBL ID | 1529350 |
CHEBI ID | 116579 |
Synonym |
---|
2-(3-methoxyphenyl)-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazole |
smr000115648 |
MLS000548621 |
AP-501/42682669 |
methyl 3-{5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-yl}phenyl ether |
CHEBI:116579 |
HMS2407O12 |
CHEMBL1529350 |
Q27199467 |
Class | Description |
---|---|
(trifluoromethyl)benzenes | An organofluorine compound that is (trifluoromethyl)benzene and derivatives arising from substitution of one or more of the phenyl hydrogens. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, TYROSYL-DNA PHOSPHODIESTERASE | Homo sapiens (human) | Potency | 39.8107 | 0.0040 | 23.8416 | 100.0000 | AID485290 |
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 100.0000 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 31.6228 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 37.9330 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
BRCA1 | Homo sapiens (human) | Potency | 12.5893 | 0.8913 | 7.7225 | 25.1189 | AID624202 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 18.4782 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 39.8107 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
P53 | Homo sapiens (human) | Potency | 44.6684 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 4.4668 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 39.8107 | 0.0018 | 15.6638 | 39.8107 | AID894 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 89.1251 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 10.3225 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 5.6234 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 22.3872 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 6.3096 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 11.2202 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |